K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

Do xyz = 1, ta có thể đặt \(a=\frac{x}{x-1},\)\(b=\frac{y}{y-1},\)\(c=\frac{z}{z-1}\)

Ta có \(abc=\frac{x}{x-1}.\frac{y}{y-1}.\frac{z}{z-1}=\frac{xyz}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\) (1)

Mặt khác \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(\frac{x}{x-1}-1\right).\left(\frac{y}{y-1}-1\right).\left(\frac{z}{z-1}-1\right)\)

            \(=\frac{x-x+1}{x-1}.\frac{y-y+1}{y-1}.\frac{z-z+1}{z-1}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\)(2)

So sánh (1) và (2) ta có \(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)\(\Leftrightarrow\)\(abc=abc-ab-bc-ca+a+b+c-1\)\(\Leftrightarrow\)\(ab+bc+ca-a-b-c+1=0\) (3)

Mà với mọi a, b, c ta luôn có \(\left(a+b+c-1\right)^2\ge0\)

Hay \(a^2+b^2+c^2+2\left(ab+bc+ca-a-b-c+1\right)-1\ge0\) (4)

Thay (3) vào (4) ta được \(a^2+b^2+c^2\ge1\) hay \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)

22 tháng 10 2016

bạn viết gì mà mik chẳng hiểu gì cả

2 tháng 1 2017

dvfvgf

14 tháng 8 2019

Bạn tham khảo tại đây:

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

22 tháng 10 2016

dia chi ban vua truy cap khong tim thay

22 tháng 10 2016

Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)

Khi đó bất đẳng thức tương đương với

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Mà ta có

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)

Ta cần chứng minh

\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)

Vậy ta có điều phải chứng minh

31 tháng 12 2015

là câu hỏi tương tự nha bạn

21 tháng 5 2020

Do x, y, z khác 1 và thỏa mãn xyz = 1 nên ta có thế đặt: \(x=\frac{a^2}{bc};y=\frac{b^2}{ca};z=\frac{c^2}{ab}\)

với \(\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\ne0\)

Khi đó BĐT cần chứng minh được viết lại như sau:

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ca\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Áp dụng BĐT Bunhiacopxki ta có: \(\left[\text{∑}_{cyc}\left(a^2-bc\right)^2\right]\left[\text{∑}_{cyc}\frac{a^4}{\left(a^2-bc\right)^2}\right]\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\text{∑}_{cyc}\frac{a^4}{\left(a^2-bc\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2}\)

Đến đây, ta cần chứng minh: \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2}\ge1\left(^∗\right)\)

Thật vậy. \(\left(^∗\right)\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge a^4+b^4+c^4\)\(+\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(a^2bc+ab^2c+abc^2\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+2ab^2c+2abc^2\right)\ge0\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\)*đúng*

Vậy bất đẳng thức được chứng minh.

21 tháng 5 2020

Vì xyz=1 nên x,y,z \(\ne\)0. Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) thì ta có: \(abc=1\) và \(a,b,c\ne0,1\)

Khi đó BĐT cần chứng minh trở thành

\(\frac{1}{\left(1-a\right)^2}+\frac{1}{\left(1-b\right)^2}+\frac{1}{\left(1-c\right)^2}\ge1\Leftrightarrow\left(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\right)^2\)

\(-2\left[\frac{1}{\left(1-a\right)\left(1-b\right)}+\frac{1}{\left(1-b\right)\left(1-c\right)}+\frac{1}{\left(1-c\right)\left(1-a\right)}\right]\ge1\)

\(\Leftrightarrow\left[\frac{32\left(a+b+c\right)+ab+bc+ca}{ab+bc+ca-\left(a+b+c\right)}\right]^2-2\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca+ca-\left(a+b+c\right)}\right]\ge1\)

\(\Leftrightarrow\left[1+\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]^2-2\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]\ge1\)

\(\Leftrightarrow1+\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]\ge1\)

21 tháng 10 2016

olm có ng` lm r` đó bn qua xem lại

22 tháng 10 2016

http://olm.vn/hoi-dap/question/731102.html

16 tháng 5 2018

\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)

\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)

Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\)         (*)

Đặt (x;y;z) ------->  \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)

Suy ra (*)  <=>  \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)

Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)

Đẳng thức xảy ra <=> x = y = z = 1 

16 tháng 5 2018

Nguồn : Trần Thắng

31 tháng 10 2018

cau a la bdt vas

con cau b la van dung he qua cua bdt vas